New applications of extremely regular function spaces

Autor: Abrahamsen, Trond A., Nygaard, Olav, Põldvere, Märt
Rok vydání: 2017
Předmět:
Zdroj: Pacific J. Math. 301 (2019) 385-394
Druh dokumentu: Working Paper
DOI: 10.2140/pjm.2019.301.385
Popis: Let $L$ be an infinite locally compact Hausdorff topological space. We show that extremely regular subspaces of $C_0(L)$ have very strong diameter $2$ properties and, for every real number $\varepsilon$ with $0<\varepsilon<1$, contain an $\varepsilon$-isometric copy of $c_0$. If $L$ does not contain isolated points they even have the Daugavet property, and thus contain an asymptotically isometric copy of $\ell_1$.
Comment: 9 pages
Databáze: arXiv