The c-Nilpotent Shur Lie-Multiplier of Leibniz Algebras
Autor: | Biyogmam, G. R., Casas, J. M. |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We introduce the notion of c-nilpotent Schur Lie-multiplier of Leibniz algebras. We obtain exact sequences and formulas of the dimensions of the underlying vector spaces relating the c-nilpotent Schur Lie-multiplier of a Leibniz algebra Q and its quotient by a two-sided ideal. These tools are used to characterize Lie-nilpotency and c-Lie-stem covers of Leibniz algebras. We prove the existence of c-Lie-stem covers for finite dimensional Leibniz algebras and the non existence of c-covering on certain Lie-nilpotent Leibniz algebras with non trivial c-nilpotent Schur Lie-multiplier, and we provide characterizations of c-Lie-capability of Leibniz algebras by means of both their c-Lie-characteristic ideal and c-nilpotent Schur Lie-multiplier. Comment: arXiv admin note: text overlap with arXiv:1703.07148 |
Databáze: | arXiv |
Externí odkaz: |