Further factorization of $x^n-1$ over a finite field
Autor: | Wu, Yansheng, Yue, Qin, Fan, Shuqin |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\Bbb F_q$ be a finite field with $q$ elements and $n$ a positive integer. Mart\'inez, Vergara and Oliveira \cite{MVO} explicitly factorized $x^{n} - 1$ over $\Bbb F_q$ under the condition of $rad(n)|(q-1)$. In this paper, suppose that $rad(n)\nmid (q-1)$ and $rad(n)|(q^w-1)$, where $w$ is a prime, we explicitly factorize $x^{n}-1$ into irreducible factors in $\Bbb F_q[x]$ and count the number of its irreducible factors. |
Databáze: | arXiv |
Externí odkaz: |