Autor: |
Gupta, Sanjiv K., Hare, Kathryn E. |
Rok vydání: |
2017 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We prove a two-sided transference theorem between $L^{p}$ spherical multipliers on the compact symmetric space $U/K$ and $L^{p}$ multipliers on the vector space $i\mathfrak{p},$ where the Lie algebra of $U$ has Cartan decomposition $\mathfrak{k\oplus }i\mathfrak{p}$. This generalizes the classic theorem transference theorem of deLeeuw relating multipliers on $% L^{p}(\mathbb{T)}$ and $L^{p}(\mathbb{R)}$. |
Databáze: |
arXiv |
Externí odkaz: |
|