Transferring spherical multipliers on compact symmetric spaces

Autor: Gupta, Sanjiv K., Hare, Kathryn E.
Rok vydání: 2017
Předmět:
Druh dokumentu: Working Paper
Popis: We prove a two-sided transference theorem between $L^{p}$ spherical multipliers on the compact symmetric space $U/K$ and $L^{p}$ multipliers on the vector space $i\mathfrak{p},$ where the Lie algebra of $U$ has Cartan decomposition $\mathfrak{k\oplus }i\mathfrak{p}$. This generalizes the classic theorem transference theorem of deLeeuw relating multipliers on $% L^{p}(\mathbb{T)}$ and $L^{p}(\mathbb{R)}$.
Databáze: arXiv