Effect of Chain Stiffness on the Structure of Single-Chain Polymer Nanoparticles

Autor: Moreno, Angel J., Bacova, Petra, Verso, Federica Lo, Arbe, Arantxa, Colmenero, Juan, Pomposo, Jose A.
Rok vydání: 2017
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1088/1361-648X/aa9f5c
Popis: Polymeric single-chain nanoparticles (SCNPs) are soft nano-objects synthesized by purely intramolecular cross-linking of single polymer chains. By means of computer simulations, we investigate the conformational properties of SCNPs as a function of the bending stiffness of their linear polymer precursors. We investigate a broad range of characteristic ratios from the fully flexible case to those typical of bulky synthetic polymers. Increasing stiffness hinders bonding of groups separated by short contour distances and increases looping over longer distances, leading to more compact nanoparticles with a structure of highly interconnected loops. This feature is reflected in a crossover in the scaling behaviour of several structural observables. The scaling exponents change from those characteristic for Gaussian chains or rings in $\theta$-solvents in the fully flexible limit, to values resembling fractal or `crumpled' globular behaviour for very stiff SCNPs. We characterize domains in the SCNPs. These are weakly deformable regions that can be seen as disordered analogues of domains in disordered proteins. Increasing stiffness leads to bigger and less deformable domains. Surprisingly, the scaling behaviour of the domains is in all cases similar to that of Gaussian chains or rings, irrespective of the stiffness and degree of cross-linking. It is the spatial arrangement of the domains which determines the global structure of the SCNP (sparse Gaussian-like object or crumpled globule). Since intramolecular stiffness can be varied through the specific chemistry of the precursor or by introducing bulky side groups in its backbone, our results propose a new strategy to tune the global structure of SCNPs.
Comment: 20 pages, 17 figures
Databáze: arXiv