Fronts d'onde des repr{\'e}sentations temp{\'e}r{\'e}es et de r{\'e}duction unipotente pour SO(2n + 1)

Autor: Waldspurger, Jean-Loup
Jazyk: francouzština
Rok vydání: 2017
Předmět:
Zdroj: Tunisian J. Math. 2 (2020) 43-95
Druh dokumentu: Working Paper
DOI: 10.2140/tunis.2020.2.43
Popis: Let G be a special orthogonal group SO(2n+1) defined over a p-adic field F. Let $\pi$ be an admissible irreducible representation of G(F) which is tempered and of unipotent reduction. We prove that $\pi$ has a wave front set. In some particular cases, for instance if $\pi$ is of the discrete series, we give a method to compute this wave front set.
Comment: in French
Databáze: arXiv