Fronts d'onde des repr{\'e}sentations temp{\'e}r{\'e}es et de r{\'e}duction unipotente pour SO(2n + 1)
Autor: | Waldspurger, Jean-Loup |
---|---|
Jazyk: | francouzština |
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Tunisian J. Math. 2 (2020) 43-95 |
Druh dokumentu: | Working Paper |
DOI: | 10.2140/tunis.2020.2.43 |
Popis: | Let G be a special orthogonal group SO(2n+1) defined over a p-adic field F. Let $\pi$ be an admissible irreducible representation of G(F) which is tempered and of unipotent reduction. We prove that $\pi$ has a wave front set. In some particular cases, for instance if $\pi$ is of the discrete series, we give a method to compute this wave front set. Comment: in French |
Databáze: | arXiv |
Externí odkaz: |