Autor: |
Barbieri, Davide, Cabrelli, Carlos, Hernández, Eugenio, Luthy, Peter, Molter, Ursula, Mosquera, Carolina |
Rok vydání: |
2017 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
In this note we investigate the existence of frames of exponentials for $L^2(\Omega)$ in the setting of LCA groups. Our main result shows that sub-multitiling properties of $\Omega \subset \widehat{G}$ with respect to a uniform lattice $\Gamma$ of $\widehat{G}$ guarantee the existence of a frame of exponentials with frequencies in a finite number of translates of the annihilator of $\Gamma$. We also prove the converse of this result and provide conditions for the existence of these frames. These conditions extend recent results on Riesz bases of exponentials and multitilings to frames. |
Databáze: |
arXiv |
Externí odkaz: |
|