Phenomenological model for predicting stationary and non-stationary spectra of wave turbulence in vibrating plates
Autor: | Humbert, T., Josserand, C., Touzé, C., Cadot, O. |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Physica D: Nonlinear Phenomena 316 (2016): 34-42 |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.physd.2015.11.006 |
Popis: | A phenomenological model describing the time-frequency dependence of the power spectrum of thin plates vibrating in a wave turbulence regime, is introduced. The model equation contains as basic solutions the Rayleigh-Jeans equipartition of energy, as well as the Kolmogorov-Zakharov spectrum of wave turbulence. In the Wave Turbulence Theory framework, the model is used to investigate the self-similar, non-stationary solutions of forced and free turbulent vibrations. Frequency-dependent damping laws can easily be accounted for. Their effects on the characteristics of the stationary spectra of turbulence are then investigated. Thanks to this analysis, self-similar universal solutions are given, relating the power spectrum to both the injected power and the damping law. Comment: 22 pages, 9 figures |
Databáze: | arXiv |
Externí odkaz: |