Volume and Homology for Hyperbolic $3$-Orbifolds, I
Autor: | Shalen, Peter B. |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let ${\mathfrak M}$ be a closed, orientable, hyperbolic 3-orbifold whose singular set is a link, and such that $\pi_1({\mathfrak M})$ contains no hyperbolic triangle group. We show that if the underlying manifold $|{\mathfrak M}|$ is irreducible, and $|{\mathfrak M}|$ is irreducible for every two-sheeted (orbifold) covering $\widetilde{\mathfrak M}$ of ${\mathfrak M}$, and if ${\rm vol} {\mathfrak M}\le1.72$, then $\dim H_1({\mathfrak M};{\mathbb Z}_2)\le 15$. Furthermore, if ${\rm vol} {\mathfrak M}\le1.22$ then $\dim H_1({\mathfrak M};{\mathbb Z}_2)\le 11$, and if ${\rm vol} {\mathfrak M}\le0.61$ then $\dim H_1({\mathfrak M};{\mathbb Z}_2)\le 7$. The proof is an application of results that will be used in the sequel to this paper to obtain qualitatively similar results without the assumption of irreducibility of $|{\mathfrak M}|$ and $|\widetilde{\mathfrak M}|$. Comment: 99 pages |
Databáze: | arXiv |
Externí odkaz: |