Monte Carlo Methods for Uniform Approximation on Periodic Sobolev Spaces with Mixed Smoothness

Autor: Byrenheid, Glenn, Kunsch, Robert J., Nguyen, Van Kien
Rok vydání: 2017
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1016/j.jco.2017.12.002
Popis: We consider the order of convergence for linear and nonlinear Monte Carlo approximation of compact embeddings from Sobolev spaces of dominating mixed smoothness defined on the torus $\mathbb{T}^d$ into the space $L_{\infty}(\mathbb{T}^d)$ via methods that use arbitrary linear information. These cases are interesting because we can gain a speedup of up to $1/2$ in the main rate compared to the worst case approximation. In doing so we determine the rate for some cases that have been left open by Fang and Duan.
Databáze: arXiv