Global weak solutions of the Teichm\'uller harmonic map flow into general targets

Autor: Rupflin, Melanie, Topping, Peter M.
Rok vydání: 2017
Předmět:
Zdroj: Analysis & PDE 12 (2019) 815-842
Druh dokumentu: Working Paper
DOI: 10.2140/apde.2019.12.815
Popis: We analyse finite-time singularities of the Teichm\"uller harmonic map flow -- a natural gradient flow of the harmonic map energy -- and find a canonical way of flowing beyond them in order to construct global solutions in full generality. Moreover, we prove a no-loss-of-topology result at finite time, which completes the proof that this flow decomposes an arbitrary map into a collection of branched minimal immersions connected by curves.
Databáze: arXiv