Zeroth Poisson homology, foliated cohomology and perfect Poisson manifolds
Autor: | Torres, David Martínez, Miranda, Eva |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Regul. Chaotic Dyn. 23 (2018), 1, 47-53 |
Druh dokumentu: | Working Paper |
DOI: | 10.1134/S1560354718010045 |
Popis: | We prove that for regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group and we give some applications. In particular, we show that for regular unimodular Poisson manifolds top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what is a perfect Poisson manifold. We use these Poisson homology computations to provide families of perfect Poisson manifolds. Comment: 8 pages |
Databáze: | arXiv |
Externí odkaz: |