Effective-range dependence of two-dimensional Fermi gases
Autor: | Schonenberg, L. M., Verpoort, P. C., Conduit, G. J. |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Physical Review A 96, 023619 (2017) |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevA.96.023619 |
Popis: | The Feshbach resonance provides precise control over the scattering length and effective range of interactions between ultracold atoms. We propose the ultratransferable pseudopotential to model effective interaction ranges $-1.5 \leq k_\mathrm{F}^2 R_\mathrm{eff}^2 \leq 0$, here $R_\mathrm{eff}$ is the effective range and $k_\mathrm{F}$ is the Fermi wave vector, describing narrow to broad Feshbach resonances. We develop a mean-field treatment and exploit the pseudopotential to perform a variational and diffusion Monte Carlo study of the ground state of the two-dimensional Fermi gas, reporting on the ground-state energy, contact, condensate fraction, momentum distribution, and pair-correlation functions as a function of the effective interaction range across the BEC-BCS crossover. The limit $k_\mathrm{F}^2 R_\mathrm{eff}^2 \to -\infty$ is a gas of bosons with zero binding energy, whereas $\ln(k_\mathrm{F} a) \to -\infty$ corresponds to noninteracting bosons with infinite binding energy. Comment: 13 pages, 12 figures |
Databáze: | arXiv |
Externí odkaz: |