Autor: |
Abadi, Martín, Erlingsson, Úlfar, Goodfellow, Ian, McMahan, H. Brendan, Mironov, Ilya, Papernot, Nicolas, Talwar, Kunal, Zhang, Li |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
IEEE 30th Computer Security Foundations Symposium (CSF), pages 1--6, 2017 |
Druh dokumentu: |
Working Paper |
DOI: |
10.1109/CSF.2017.10 |
Popis: |
The recent, remarkable growth of machine learning has led to intense interest in the privacy of the data on which machine learning relies, and to new techniques for preserving privacy. However, older ideas about privacy may well remain valid and useful. This note reviews two recent works on privacy in the light of the wisdom of some of the early literature, in particular the principles distilled by Saltzer and Schroeder in the 1970s. |
Databáze: |
arXiv |
Externí odkaz: |
|