Strong input-to-state stability for infinite dimensional linear systems
Autor: | Nabiullin, Robert, Schwenninger, Felix |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Mathematics of Control, Signals and Systems, 30(4), 2018 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s00498-018-0210-8 |
Popis: | This paper deals with strong versions of input-to-state stability and integral input-to-state stability of infinite-dimensional linear systems with an unbounded input operator. We show that infinite-time admissibility with respect to inputs in an Orlicz space is a sufficient condition for a system to be strongly integral input-to-state stable but, unlike in the case of exponentially stable systems, not a necessary one. Comment: 12 pages, revised introduction, streamlined article, added references |
Databáze: | arXiv |
Externí odkaz: |