K-orbit closures and Barbasch-Evens-Magyar varieties
Autor: | Escobar, Laura, Wyser, Benjamin J., Yong, Alexander |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Pacific J. Math. 320 (2022) 103-132 |
Druh dokumentu: | Working Paper |
DOI: | 10.2140/pjm.2022.320.103 |
Popis: | We define the Barbasch-Evens-Magyar varieties. We show they are isomorphic to the smooth varieties defined in [D.~Barbasch-S.~Evens '94] that map generically finitely to symmetric orbit closures, thereby giving resolutions of singularities in certain cases. Our definition parallels [P.~Magyar '98]'s construction of the Bott-Samelson varieties [H.~C.~Hansen '73, M.~Demazure '74]. From this alternative viewpoint, one deduces a graphical description in type $A$, stratification into closed subvarieties of the same kind, and determination of the torus-fixed points. Moreover, we explain how these manifolds inherit a natural symplectic structure with Hamiltonian torus action. We then express the moment polytope in terms of the moment polytope of a Bott-Samelson variety. Comment: 22 pages, 5 figures. Accepted for publication at Pacific J. Math |
Databáze: | arXiv |
Externí odkaz: |