Double Bubbles on the Real Line with Log-Convex Density
Autor: | Bongiovanni, Eliot, Di Giosia, Leonardo, Diaz, Alejandro, Habib, Jahangir, Kakkar, Arjun, Kenigsberg, Lea, Pittman, Dylanger, Sothanaphan, Nat, Zhu, Weitao |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Anal. Geom. Metric Spaces 6 (2018) 64-88 |
Druh dokumentu: | Working Paper |
DOI: | 10.1515/agms-2018-0004 |
Popis: | The classic double bubble theorem says that the least-perimeter way to enclose and separate two prescribed volumes in $\mathbb{R}^N$ is the standard double bubble. We seek the optimal double bubble in $\mathbb{R}^N$ with density, which we assume to be strictly log-convex. For $N=1$ we show that the solution is sometimes two contiguous intervals and sometimes three contiguous intervals. In higher dimensions, we think that the solution is sometimes a standard double bubble and sometimes concentric spheres (e.g. for one volume small and the other large). Comment: 47 pages, 10 figures |
Databáze: | arXiv |
Externí odkaz: |