On geometric degenerations and Gerstenhaber formal deformations
Autor: | Chouhy, Sergio |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1112/blms.12277 |
Popis: | We study the degeneration relations on the varieties of associative and Lie algebra structures on a fixed finite dimensional vector space and give a description of them in terms of Gerstenhaber formal deformations. We use this result to show how the orbit closure of the $3$-dimensional Lie algebras can be determined using homological algebra. For the case of finite dimensional associative algebras, we prove that the $N$-Koszul property is preserved under the degeneration relation for all $N\geq2$. Comment: 11 pages |
Databáze: | arXiv |
Externí odkaz: |