Graphs having extremal monotonic topological indices with bounded vertex $k$-partiteness
Autor: | Gao, Fang, Zhao, Duo Duo, Li, Xiao-Xin, Liu, Jia-Bao |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The vertex $k$-partiteness $v_k(G)$ of graph $G$ is defined as the fewest number of vertices whose deletion from $G$ yields a $k$-partite graph. In this paper, we introduce two concepts: monotonic decreasing topological index and monotonic increasing topological index, and characterize the extremal graphs having the minimum Wiener index, the maximum Harry index, the maximum reciprocal degree distance, the minimum eccentricity distance sum, the minimum adjacent eccentric distance sum index, the maximum connective eccentricity index, the maximum Zagreb indices among graphs with a fixed number $n$ of vertices and fixed vertex $k$-partiteness, respectively. Comment: 15 pages |
Databáze: | arXiv |
Externí odkaz: |