Machine-learning-based nonlinear decomposition of CT images for metal artifact reduction

Autor: Park, Hyung Suk, Lee, Sung Min, Kim, Hwa Pyung, Seo, Jin Keun
Rok vydání: 2017
Předmět:
Druh dokumentu: Working Paper
Popis: Computed tomography (CT) images containing metallic objects commonly show severe streaking and shadow artifacts. Metal artifacts are caused by nonlinear beam-hardening effects combined with other factors such as scatter and Poisson noise. In this paper, we propose an implant-specific method that extracts beam-hardening artifacts from CT images without affecting the background image. We found that in cases where metal is inserted in the water (or tissue), the generated beam-hardening artifacts can be approximately extracted by subtracting artifacts generated exclusively by metals. We used a deep learning technique to train nonlinear representations of beam-hardening artifacts arising from metals, which appear as shadows and streaking artifacts. The proposed network is not designed to identify ground-truth CT images (i.e., the CT image before its corruption by metal artifacts). Consequently, these images are not required for training. The proposed method was tested on a dataset consisting of real CT scans of pelvises containing simulated hip prostheses. The results demonstrate that the proposed deep learning method successfully extracts both shadowing and streaking artifacts.
Databáze: arXiv