Autor: |
Gallego, Edisson, Gomez-Ramirez, Danny A. J., Velez, Juan D. |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
Results in Mathematics, pp. 1-9, 2017 |
Druh dokumentu: |
Working Paper |
DOI: |
10.1007/s00025-017-0691-7 |
Popis: |
We present a non-standard proof of the fact that the existence of a local (i.e. restricted to a point) characteristic-zero, semi-parametric lifting for a variety defined by the zero locus of polynomial equations over the integers is equivalent to the existence of a collection of local semi-parametric (positive-characteristic) reductions of such variety for almost all primes (i.e. outside a finite set), and such that there exists a global complexity bounding all the corresponding structures involved. Results of this kind are a fundamental tool for transferring theorems in commutative algebra from a characteristic-zero setting to a positive-characteristic one. |
Databáze: |
arXiv |
Externí odkaz: |
|