Syllable-aware Neural Language Models: A Failure to Beat Character-aware Ones
Autor: | Assylbekov, Zhenisbek, Takhanov, Rustem, Myrzakhmetov, Bagdat, Washington, Jonathan N. |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Syllabification does not seem to improve word-level RNN language modeling quality when compared to character-based segmentation. However, our best syllable-aware language model, achieving performance comparable to the competitive character-aware model, has 18%-33% fewer parameters and is trained 1.2-2.2 times faster. Comment: EMNLP 2017 |
Databáze: | arXiv |
Externí odkaz: |