Autor: |
Ponce, Augusto C., Spector, Daniel |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
C. R. Math. Acad. Sci. Paris 355 (2017), no. 9, 960-965 |
Druh dokumentu: |
Working Paper |
DOI: |
10.1016/j.crma.2017.09.001 |
Popis: |
We present the fractional perimeter as a set-function interpolation between the Lebesgue measure and the perimeter in the sense of De Giorgi. Our motivation comes from a new fractional Boxing inequality that relates the fractional perimeter and the Hausdorff content and implies several known inequalities involving the Gagliardo seminorm of the Sobolev spaces $W^{\alpha, 1}$ of order $0 < \alpha < 1$. |
Databáze: |
arXiv |
Externí odkaz: |
|