A note on the fractional perimeter and interpolation

Autor: Ponce, Augusto C., Spector, Daniel
Rok vydání: 2017
Předmět:
Zdroj: C. R. Math. Acad. Sci. Paris 355 (2017), no. 9, 960-965
Druh dokumentu: Working Paper
DOI: 10.1016/j.crma.2017.09.001
Popis: We present the fractional perimeter as a set-function interpolation between the Lebesgue measure and the perimeter in the sense of De Giorgi. Our motivation comes from a new fractional Boxing inequality that relates the fractional perimeter and the Hausdorff content and implies several known inequalities involving the Gagliardo seminorm of the Sobolev spaces $W^{\alpha, 1}$ of order $0 < \alpha < 1$.
Databáze: arXiv