Note on group irregularity strength of disconnected graphs
Autor: | Anholcer, Marcin, Cichacz, Sylwia, Jura, Rafal, Marczyk, Antoni |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Open Mathematics 16 (2018), 154-160 |
Druh dokumentu: | Working Paper |
DOI: | 10.1515/math-2018-0017 |
Popis: | We investigate the \textit{group irregularity strength} ($s_g(G)$) of graphs, i.e. the smallest value of $s$ such that taking any Abelian group $\gr$ of order $s$, there exists a function $f:E(G)\rightarrow \gr$ such that the sums of edge labels at every vertex are distinct. So far it was not known if $s_g(G)$ is bounded for disconnected graphs. In the paper we we present some upper bound for all graphs. Moreover we give the exact values and bounds on $s_g(G)$ for disconnected graphs without a star as a component. Comment: arXiv admin note: substantial text overlap with arXiv:1209.0200 |
Databáze: | arXiv |
Externí odkaz: |