LIUM-CVC Submissions for WMT17 Multimodal Translation Task
Autor: | Caglayan, Ozan, Aransa, Walid, Bardet, Adrien, García-Martínez, Mercedes, Bougares, Fethi, Barrault, Loïc, Masana, Marc, Herranz, Luis, van de Weijer, Joost |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | This paper describes the monomodal and multimodal Neural Machine Translation systems developed by LIUM and CVC for WMT17 Shared Task on Multimodal Translation. We mainly explored two multimodal architectures where either global visual features or convolutional feature maps are integrated in order to benefit from visual context. Our final systems ranked first for both En-De and En-Fr language pairs according to the automatic evaluation metrics METEOR and BLEU. Comment: MMT System Description Paper for WMT17 |
Databáze: | arXiv |
Externí odkaz: |