Autor: |
Mhalla, Ala, Chateau, Thierry, Maamatou, Houda, Gazzah, Sami, Amara, Najoua Essoukri Ben |
Rok vydání: |
2017 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
DOI: |
10.1016/j.cviu.2017.06.008 |
Popis: |
Generally, the performance of a generic detector decreases significantly when it is tested on a specific scene due to the large variation between the source training dataset and the samples from the target scene. To solve this problem, we propose a new formalism of transfer learning based on the theory of a Sequential Monte Carlo (SMC) filter to automatically specialize a scene-specific Faster R-CNN detector. The suggested framework uses different strategies based on the SMC filter steps to approximate iteratively the target distribution as a set of samples in order to specialize the Faster R-CNN detector towards a target scene. Moreover, we put forward a likelihood function that combines spatio-temporal information extracted from the target video sequence and the confidence-score given by the output layer of the Faster R-CNN, to favor the selection of target samples associated with the right label. The effectiveness of the suggested framework is demonstrated through experiments on several public traffic datasets. Compared with the state-of-the-art specialization frameworks, the proposed framework presents encouraging results for both single and multi-traffic object detections. |
Databáze: |
arXiv |
Externí odkaz: |
|