Nov\'ak-Carmichael numbers and shifted primes without large prime factors
Autor: | Kalmynin, Alexander |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove some new lower bounds for the counting function $\mathcal N_{\mathcal C}(x)$ of the set of Nov\'ak-Carmichael numbers. Our estimates depend on the bounds for the number of shifted primes without large prime factors. In particular, we prove that $\mathcal N_{\mathcal C}(x) \gg x^{0.7039-o(1)}$ unconditionally and that $\mathcal N_{\mathcal C}(x) \gg xe^{-(7+o(1))(\log x)\frac{\log\log\log x}{\log\log x}}$, under some reasonable hypothesis. Comment: 7 pages |
Databáze: | arXiv |
Externí odkaz: |