On the spectra of geometric operators evolving with geometric flows

Autor: Mesquita, R. R., Tsonev, D. M.
Rok vydání: 2017
Předmět:
Druh dokumentu: Working Paper
Popis: In this work we generalise various recent results on the evolution and monotonicity of the eigenvalues of certain geometric operators under specified geometric flows. Given a closed, compact Riemannian manifold $\big(M^n,g(t)\big)$ and a smooth function $\eta\in C^{\infty}(M)$ we consider the family of operators $\mathbb{L}=\Delta - g(\nabla\eta,\nabla\cdot)+cR$, where $R$ is the scalar curvature and $c$ is some real constant. We define a geometric flow on $M$ which encompasses the Ricci, the Ricci - Bourguignon and the Yamabe flows. Supposing that the metric $g(t)$ evolves along this general geometric flow we derive a formula for the evolution of the eigenvalues of $-\mathbb{L}$ and prove monotonicity results for the eigenvalues of both $-\Delta + g(\nabla\eta,\nabla\cdot)$ and $-\mathbb{L}$. We then prove Reilly-type formula for the operator $\mathbb{L}$ and employ it to establish an upper bound for the first variation of the eigenvalues of $-\mathbb{L}$. Finally, in the pursuit of a theoretical explanation of our generalisations, we formulate two conjectures on the monotonicity of the eigenvalues of Schr\"{o}dinger operators.
Databáze: arXiv