Double jump phase transition in a soliton cellular automaton
Autor: | Levine, Lionel, Lyu, Hanbaek, Pike, John |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we consider the soliton cellular automaton introduced in [Takahashi 1990] with a random initial configuration. We give multiple constructions of a Young diagram describing various statistics of the system in terms of familiar objects like birth-and-death chains and Galton-Watson forests. Using these ideas, we establish limit theorems showing that if the first $n$ boxes are occupied independently with probability $p\in(0,1)$, then the number of solitons is of order $n$ for all $p$, and the length of the longest soliton is of order $\log n$ for $p<1/2$, order $\sqrt{n}$ for $p=1/2$, and order $n$ for $p>1/2$. Additionally, we uncover a condensation phenomenon in the supercritical regime: For each fixed $j\geq 1$, the top $j$ soliton lengths have the same order as the longest for $p\leq 1/2$, whereas all but the longest have order at most $\log n$ for $p>1/2$. As an application, we obtain scaling limits for the lengths of the $k^{\text{th}}$ longest increasing and decreasing subsequences in a random stack-sortable permutation of length $n$ in terms of random walks and Brownian excursions. Comment: 44 pages, 2 tables and 13 figures. Minor correction to Thm 2. (i) |
Databáze: | arXiv |
Externí odkaz: |