Nonlocal magnon-polaron transport in yttrium iron garnet

Autor: Cornelissen, L. J., Oyanagi, K., Kikkawa, T., Qiu, Z., Kuschel, T., Bauer, G. E. W., van Wees, B. J., Saitoh, E.
Rok vydání: 2017
Předmět:
Zdroj: Phys. Rev. B 96, 104441 (2017)
Druh dokumentu: Working Paper
DOI: 10.1103/PhysRevB.96.104441
Popis: The spin Seebeck effect (SSE) is observed in magnetic insulator|heavy metal bilayers as an inverse spin Hall effect voltage under a temperature gradient. The SSE can be detected nonlocally as well, viz. in terms of the voltage in a second metallic contact (detector) on the magnetic film, spatially separated from the first contact that is used to apply the temperature bias (injector). Magnon-polarons are hybridized lattice and spin waves in magnetic materials, generated by the magnetoelastic interaction. Kikkawa et al. [Phys. Rev. Lett. \textbf{117}, 207203 (2016)] interpreted a resonant enhancement of the local SSE in yttrium iron garnet (YIG) as a function of the magnetic field in terms of magnon-polaron formation. Here we report the observation of magnon-polarons in \emph{nonlocal} magnon spin injection/detection devices for various injector-detector spacings and sample temperatures. Unexpectedly, we find that the magnon-polaron resonances can suppress rather than enhance the nonlocal SSE. Using finite element modelling we explain our observations as a competition between the SSE and spin diffusion in YIG. These results give unprecedented insights into the magnon-phonon interaction in a key magnetic material.
Comment: 5 pages, 6 figures
Databáze: arXiv