Divisibility in paired progressions, Goldbach's conjecture, and the infinitude of prime pairs
Autor: | Ziller, Mario, Morack, John F. |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We investigate progressions in the set of pairs of integers $\mathbb{Z}^2$ and define a generalisation of the Jacobsthal function. For this function, we conjecture a specific upper bound and prove that this bound would be a sufficient condition for the truth of the Goldbach conjecture, the infinitude of prime twins, and more general of prime pairs with a fixed even difference. Comment: 10 pages, 1 figure |
Databáze: | arXiv |
Externí odkaz: |