Improving galaxy morphology with machine learning

Autor: Barchi, P. H., da Costa, F. G., Sautter, R., Moura, T. C., Stalder, D. H., Rosa, R. R., de Carvalho, R. R.
Rok vydání: 2017
Předmět:
Zdroj: Journal of Computacional Interdisciplinary Sciences, v. 7, p. 114. 2016
Druh dokumentu: Working Paper
DOI: 10.6062/jcis.2016.07.03.0114
Popis: This paper presents machine learning experiments performed over results of galaxy classification into elliptical (E) and spiral (S) with morphological parameters: concetration (CN), assimetry metrics (A3), smoothness metrics (S3), entropy (H) and gradient pattern analysis parameter (GA). Except concentration, all parameters performed a image segmentation pre-processing. For supervision and to compute confusion matrices, we used as true label the galaxy classification from GalaxyZoo. With a 48145 objects dataset after preprocessing (44760 galaxies labeled as S and 3385 as E), we performed experiments with Support Vector Machine (SVM) and Decision Tree (DT). Whit a 1962 objects balanced dataset, we applied K- means and Agglomerative Hierarchical Clustering. All experiments with supervision reached an Overall Accuracy OA >= 97%.
Databáze: arXiv