Lifting the Cartier transform of Ogus-Vologodsky modulo $p^n$
Autor: | Xu, Daxin |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | M\'emoires de la Soci\'et\'e Math\'ematique de France 163 (2019) |
Druh dokumentu: | Working Paper |
DOI: | 10.24033/msmf.471 |
Popis: | Let $W$ be the ring of the Witt vectors of a perfect field of characteristic $p$, $\mathfrak{X}$ a smooth formal scheme over $W$, $\mathfrak{X}'$ the base change of $\mathfrak{X}$ by the Frobenius morphism of $W$, $\mathfrak{X}_{2}'$ the reduction modulo $p^{2}$ of $\mathfrak{X}'$ and $X$ the special fiber of $\mathfrak{X}$. We lift the Cartier transform of Ogus-Vologodsky defined by $\mathfrak{X}_{2}'$ modulo $p^{n}$. More precisely, we construct a functor from the category of $p^{n}$-torsion $\mathscr{O}_{\mathfrak{X}'}$-modules with integrable $p$-connection to the category of $p^{n}$-torsion $\mathscr{O}_{\mathfrak{X}}$-modules with integrable connection, each subject to suitable nilpotence conditions. Our construction is based on Oyama's reformulation of the Cartier transform of Ogus-Vologodsky in characteristic $p$. If there exists a lifting $F:\mathfrak{X}\to \mathfrak{X}'$ of the relative Frobenius morphism of $X$, our functor is compatible with a functor constructed by Shiho from $F$. As an application, we give a new interpretation of Faltings' relative Fontaine modules and of the computation of their cohomology. Comment: 96 pages, final version, to appear in M\'emoires de la Soci\'et\'e Math\'ematique de France |
Databáze: | arXiv |
Externí odkaz: |