Vizing-type bounds for graphs with induced subgraph restrictions
Autor: | Krop, Elliot, Patel, Pritul, Porta, Gaspar |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For any graphs $G$ and $H$, we say that a bound is of Vizing-type if $\gamma(G\square H)\geq c \gamma(G)\gamma(H)$ for some constant $c$. We show several bounds of Vizing-type for graphs $G$ with forbidden induced subgraphs. In particular, if $G$ is a triangle and $K_{1,r}$-free graph, then for any graph $H$, $\gamma(G\square H)\geq \frac{r}{2r-1}\gamma(G)\gamma(H)$. If $G$ is a $K_r$ and $P_5$-free graph for some integer $r\geq 2$, then for any graph $H$, $\gamma(G\square H)\geq \frac{r-1}{2r-3}\gamma(G)\gamma(H)$. We do this by bounding the power of $G$, $\pi(G)$. We show that if $G$ is claw-free and $P_6$-free or $K_4$ and $P_5$-free, then for any graph $H$, $\gamma(G\square H)\geq \gamma(G)\gamma(H)$. Furthermore, we show Vizing-type bounds in terms of the diameter of $G$. Comment: 9 pages |
Databáze: | arXiv |
Externí odkaz: |
Pro tento záznam nejsou dostupné žádné jednotky.