Solutions for biharmonic equations with steep potential wells
Autor: | Guo, Yuxia, Tang, Zhongwei, Wang, Lushun |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we are concerned with the existence of least energy solutions for the following biharmonic equations: $$\Delta^2 u+(\lambda V(x)-\delta)u=|u|^{p-2}u \quad in\quad \mathbb{R}^N$$ where $N\geq 5, 2 0$ is a parameter, $V(x)$ is a nonnegative potential function with nonempty zero sets $\mbox{int} V^{-1}(0)$, $0<\delta<\mu_0$ and $\mu_0$ is the principle eigenvalue of $\Delta^2$ in the zero sets $\mbox{int} V^{-1}(0)$ of $V(x)$. Here $\mbox{int} V^{-1}(0)$ denotes the interior part of the set $V^{-1}(0):=\{x\in \mathbb{R}^N: V(x)=0\}$. We prove that the above equation admits a least energy solution which is trapped near the zero sets $\mbox{int} V^{-1}(0)$ for $\lambda>0$ large. |
Databáze: | arXiv |
Externí odkaz: |