Lieb-Robinson bounds on $n$-partite connected correlation functions
Autor: | Tran, Minh Cong, Garrison, James R., Gong, Zhe-Xuan, Gorshkov, Alexey V. |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Phys. Rev. A 96, 052334 (2017) |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevA.96.052334 |
Popis: | Lieb and Robinson provided bounds on how fast bipartite connected correlations can arise in systems with only short-range interactions. We generalize Lieb-Robinson bounds on bipartite connected correlators to multipartite connected correlators. The bounds imply that an $n$-partite connected correlator can reach unit value in constant time. Remarkably, the bounds also allow for an $n$-partite connected correlator to reach a value that is exponentially large with system size in constant time, a feature which stands in contrast to bipartite connected correlations. We provide explicit examples of such systems. Comment: 10 pages, 4 figues |
Databáze: | arXiv |
Externí odkaz: |