Poincare series of character varieties for nilpotent groups
Autor: | Stafa, Mentor |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | J. Group Theory 2019, v. 22 (3), pp. 419-440 |
Druh dokumentu: | Working Paper |
DOI: | 10.1515/jgth-2018-0120 |
Popis: | For any compact and connected Lie group $G$ and any free abelian or free nilpotent group $\Gamma$ , we determine the cohomology of the path component of the trivial representation of the representation space (character variety) $Rep(\Gamma,G)_1$, with coefficients in a field $F$ with ${char} (F)$ either 0 or relatively prime to the order of the Weyl group $W$. We give explicit formulas for the Poincar\'e series. In addition we study $G$-equivariant stable decompositions of subspaces $X(q,G)$ of the free monoid $J(G)$ generated by the Lie group $G$, obtained from finitely generated free nilpotent group representations. Comment: 17 pages |
Databáze: | arXiv |
Externí odkaz: |