On the locus of $2$-dimensional crystalline representations with a given reduction modulo $p$

Autor: Rozensztajn, Sandra
Rok vydání: 2017
Předmět:
Zdroj: Alg. Number Th. 14 (2020) 643-700
Druh dokumentu: Working Paper
DOI: 10.2140/ant.2020.14.655
Popis: We consider the family of irreducible crystalline representations of dimension $2$ of ${\rm Gal}(\overline{\bf Q}_p/{\bf Q}_p)$ given by the $V_{k,a_p}$ for a fixed weight integer $k\geq 2$. We study the locus of the parameter $a_p$ where these representations have a given reduction modulo $p$. We give qualitative results on this locus and show that for a fixed $p$ and $k$ it can be computed by determining the reduction modulo $p$ of $V_{k,a_p}$ for a finite number of values of the parameter $a_p$. We also generalize these results to other Galois types.
Comment: to appear in Algebra & Number Theory
Databáze: arXiv