Joint Sequence Learning and Cross-Modality Convolution for 3D Biomedical Segmentation
Autor: | Tseng, Kuan-Lun, Lin, Yen-Liang, Hsu, Winston, Huang, Chung-Yang |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Deep learning models such as convolutional neural net- work have been widely used in 3D biomedical segmentation and achieve state-of-the-art performance. However, most of them often adapt a single modality or stack multiple modalities as different input channels. To better leverage the multi- modalities, we propose a deep encoder-decoder structure with cross-modality convolution layers to incorporate different modalities of MRI data. In addition, we exploit convolutional LSTM to model a sequence of 2D slices, and jointly learn the multi-modalities and convolutional LSTM in an end-to-end manner. To avoid converging to the certain labels, we adopt a re-weighting scheme and two-phase training to handle the label imbalance. Experimental results on BRATS-2015 show that our method outperforms state-of-the-art biomedical segmentation approaches. Comment: CVPR 2017 |
Databáze: | arXiv |
Externí odkaz: |