Manifolds with odd Euler characteristic and higher orientability

Autor: Hoekzema, Renee S.
Rok vydání: 2017
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1093/imrn/rny154
Popis: It is well-known that odd-dimensional manifolds have Euler characteristic zero. Furthemore orientable manifolds have an even Euler characteristic unless the dimension is a multiple of $4$. We prove here a generalisation of these statements: a $k$-orientable manifold (or more generally Poincar\'e complex) has even Euler characteristic unless the dimension is a multiple of $2^{k+1}$, where we call a manifold $k$-orientable if the $i^{th}$ Stiefel-Whitney class vanishes for all $0Comment: 12 pages, main theorem extended in this version
Databáze: arXiv