Quivers with relations for symmetrizable Cartan matrices V. Caldero-Chapoton formula
Autor: | Geiß, Christof, Leclerc, Bernard, Schröer, Jan |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Proc. Lond. Math. Soc. (3) 117 (2018), no. 1, 125-148 |
Druh dokumentu: | Working Paper |
DOI: | 10.1112/plms.12146 |
Popis: | We generalize the Caldero-Chapoton formula for cluster algebras of finite type to the skew-symmetrizable case. This is done by replacing representation categories of Dynkin quivers by categories of locally free modules over certain Iwanaga-Gorenstein algebras introduced in Part I. The proof relies on the realization of the positive part of the enveloping algebra of a simple Lie algebra of the same finite type as a convolution algebra of constructible functions on representation varieties of $H$, given in Part III. Along the way, we obtain a new result on the PBW basis of this convolution algebra. Comment: 24 pages. V2: Exposition improved and a few typos fixed after referee report. Final version, to appear in Proc. London Math. Soc |
Databáze: | arXiv |
Externí odkaz: |