Quivers with relations for symmetrizable Cartan matrices V. Caldero-Chapoton formula

Autor: Geiß, Christof, Leclerc, Bernard, Schröer, Jan
Rok vydání: 2017
Předmět:
Zdroj: Proc. Lond. Math. Soc. (3) 117 (2018), no. 1, 125-148
Druh dokumentu: Working Paper
DOI: 10.1112/plms.12146
Popis: We generalize the Caldero-Chapoton formula for cluster algebras of finite type to the skew-symmetrizable case. This is done by replacing representation categories of Dynkin quivers by categories of locally free modules over certain Iwanaga-Gorenstein algebras introduced in Part I. The proof relies on the realization of the positive part of the enveloping algebra of a simple Lie algebra of the same finite type as a convolution algebra of constructible functions on representation varieties of $H$, given in Part III. Along the way, we obtain a new result on the PBW basis of this convolution algebra.
Comment: 24 pages. V2: Exposition improved and a few typos fixed after referee report. Final version, to appear in Proc. London Math. Soc
Databáze: arXiv