Ginzburg-Landau equations on Riemann surfaces of higher genus
Autor: | Chouchkov, D., Ercolani, N. M., Rayan, S., Sigal, I. M. |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Ann. Inst. Henri Poincar\'e C 37 (2020), no. 1, 79--103 |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.anihpc.2019.04.002 |
Popis: | We study the Ginzburg-Landau equations on Riemann surfaces of arbitrary genus. In particular: - we construct explicitly the (local moduli space of gauge-equivalent) solutions in a neighbourhood of the constant curvature ones; - classify holomorphic structures on line bundles arising as solutions to the equations in terms of the degree, the Abel-Jacobi map, and symmetric products of the surface; - determine the form of the energy and identify when it is below the energy of the constant curvature (normal) solutions. Comment: 37 pages |
Databáze: | arXiv |
Externí odkaz: |