Geometric counting on wavefront real spherical spaces

Autor: Krötz, Bernhard, Sayag, Eitan, Schlichtkrull, Henrik
Rok vydání: 2017
Předmět:
Zdroj: Acta Math. Sinica 34(3) (2018), 488-531
Druh dokumentu: Working Paper
Popis: We provide $L^p$-versus $L^\infty$-bounds for eigenfunctions on a real spherical space $Z$ of wavefront type. It is shown that these bounds imply a non-trivial error term estimate for lattice counting on $Z$. The paper also serves as an introduction to geometric counting on spaces of the mentioned type. Section 7 on higher rank is new and extends the result from v1 to higher rank. Final version. To appear in Acta Math. Sinica.
Comment: 46 pages
Databáze: arXiv