Autor: |
Cortiñas, Guillermo, Haesemeyer, Christian, Walker, Mark E., Weibel, Charles |
Rok vydání: |
2017 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We show that if $X$ is a toric scheme over a regular commutative ring $k$ then the direct limit of the $K$-groups of $X$ taken over any infinite sequence of nontrivial dilations is homotopy invariant. This theorem was previously known for regular commutative rings containing a field. The affine case of our result was conjectured by Gubeladze. We prove analogous results when $k$ is replaced by an appropriate $K$-regular, not necessarily commutative $k$-algebra. |
Databáze: |
arXiv |
Externí odkaz: |
|