Length and decomposition of the cohomology of the complement to a hyperplane arrangement
Autor: | Bøgvad, Rikard, Gonçalves, Iara |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\mathcal A$ be a hyperplane arrangement in $\mathbb C^n$. We show that the number of decomposition factors as a perverse sheaf of the direct image $Rj_*\mathbb C_U $ of the constant sheaf on the complement $U$ to the arrangement is given by the Poincar\'e polynomial of the arrangement. Furthermore we describe the composition factors of $Rj_*\mathbb C_U $ as certain local cohomology sheaves and give their multiplicity. Comment: Final corrected version, with more references added, to appear in Proc. AMS |
Databáze: | arXiv |
Externí odkaz: |
načítá se...