Tangent cones and $C^1$ regularity of definable sets
Autor: | Kurdyka, Krzysztof, Gal, Olivier Le, Nguyen, Nhan |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $X\subset \mathbb R^n$ be a connected locally closed definable set in an o-minimal structure. We prove that the following three statements are equivalent: (i) $X$ is a $C^1$ manifold, (ii) the tangent cone and the paratangent cone of $X$ coincide at every point in $X$, (iii) for every $x \in X$, the tangent cone of $X$ at the point $x$ is a $k$-dimensional linear subspace of $\mathbb R^n$ ($k$ does not depend on $x$) varies continuously in $x$, and the density $\theta(X, x) < 3/2$. Comment: 11 pages |
Databáze: | arXiv |
Externí odkaz: |