Tangent cones and $C^1$ regularity of definable sets

Autor: Kurdyka, Krzysztof, Gal, Olivier Le, Nguyen, Nhan
Rok vydání: 2017
Předmět:
Druh dokumentu: Working Paper
Popis: Let $X\subset \mathbb R^n$ be a connected locally closed definable set in an o-minimal structure. We prove that the following three statements are equivalent: (i) $X$ is a $C^1$ manifold, (ii) the tangent cone and the paratangent cone of $X$ coincide at every point in $X$, (iii) for every $x \in X$, the tangent cone of $X$ at the point $x$ is a $k$-dimensional linear subspace of $\mathbb R^n$ ($k$ does not depend on $x$) varies continuously in $x$, and the density $\theta(X, x) < 3/2$.
Comment: 11 pages
Databáze: arXiv