Operads of genus zero curves and the Grothendieck-Teichm\'{u}ller group
Autor: | de Brito, Pedro Boavida, Horel, Geoffroy, Robertson, Marcy |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Geom. Topol. 23 (2019) 299-346 |
Druh dokumentu: | Working Paper |
DOI: | 10.2140/gt.2019.23.299 |
Popis: | We show that the group of homotopy automorphisms of the profinite completion of the genus zero surface operad is isomorphic to the (profinite) Grothendieck-Teichm\"{u}ller group. Using a result of Drummond-Cole, we deduce that the Grothendieck-Teichm\"{u}ller group acts nontrivially on $\overline{\mathcal{M}}_{0,\bullet+1}$, the operad of stable curves of genus zero. As a second application, we give an alternative proof that the framed little 2-disks operad is formal. Comment: 36 pages |
Databáze: | arXiv |
Externí odkaz: |