Log-algebraic identities on Drinfeld modules and special L-values

Autor: Chang, Chieh-Yu, El-Guindy, Ahmad, Papanikolas, Matthew A.
Rok vydání: 2017
Předmět:
Zdroj: J. Lond. Math. Soc. (2) 97 (2018), no. 2, 125-144
Druh dokumentu: Working Paper
DOI: 10.1112/jlms.12098
Popis: We formulate and prove a log-algebraicity theorem for arbitrary rank Drinfeld modules defined over the polynomial ring F_q[theta]. This generalizes results of Anderson for the rank one case. As an application we show that certain special values of Goss L-functions are linear forms in Drinfeld logarithms and are transcendental.
Comment: 21 pages
Databáze: arXiv