Log-algebraic identities on Drinfeld modules and special L-values
Autor: | Chang, Chieh-Yu, El-Guindy, Ahmad, Papanikolas, Matthew A. |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | J. Lond. Math. Soc. (2) 97 (2018), no. 2, 125-144 |
Druh dokumentu: | Working Paper |
DOI: | 10.1112/jlms.12098 |
Popis: | We formulate and prove a log-algebraicity theorem for arbitrary rank Drinfeld modules defined over the polynomial ring F_q[theta]. This generalizes results of Anderson for the rank one case. As an application we show that certain special values of Goss L-functions are linear forms in Drinfeld logarithms and are transcendental. Comment: 21 pages |
Databáze: | arXiv |
Externí odkaz: |