On fractional quasilinear parabolic problem with Hardy potential
Autor: | Abdellaoui, Boumediene, Attar, Amhed, Bentifour, Rachid, Peral, ireneo |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The aim goal of this paper is to treat the following problem \begin{equation*} \left\{ \begin{array}{rcll} u_t+(-\D^s_{p}) u &=&\dyle \l \dfrac{u^{p-1}}{|x|^{ps}} & \text{ in } \O_{T}=\Omega \times (0,T), \\ u&\ge & 0 & \text{ in }\ren \times (0,T), \\ u &=& 0 & \text{ in }(\ren\setminus\O) \times (0,T), \\ u(x,0)&=& u_0(x)& \mbox{ in }\O, \end{array}% \right. \end{equation*} where $\Omega$ is a bounded domain containing the origin, $$ (-\D^s_{p})\, u(x,t):=P.V\int_{\ren} \,\dfrac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{N+ps}} \,dy$$ with $1
|
Databáze: | arXiv |
Externí odkaz: |