Quivers with relations for symmetrizable Cartan matrices IV: Crystal graphs and semicanonical functions

Autor: Geiß, Christof, Leclerc, Bernard, Schröer, Jan
Rok vydání: 2017
Předmět:
Zdroj: Selecta Math. (N.S.) 24 (2018), no. 4, 3283-3348
Druh dokumentu: Working Paper
DOI: 10.1007/s00029-018-0412-4
Popis: We generalize Lusztig's nilpotent varieties, and Kashiwara and Saito's geometric construction of crystal graphs from the symmetric to the symmetrizable case. We also construct semicanonical functions in the convolution algebras of generalized preprojective algebras. Conjecturally these functions yield semicanonical bases of the enveloping algebras of the positive part of symmetrizable Kac-Moody algebras.
Comment: 50 pages. Version 2: A few typos fixed. Final version published in Selecta Mathematica
Databáze: arXiv