Quivers with relations for symmetrizable Cartan matrices IV: Crystal graphs and semicanonical functions
Autor: | Geiß, Christof, Leclerc, Bernard, Schröer, Jan |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Selecta Math. (N.S.) 24 (2018), no. 4, 3283-3348 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s00029-018-0412-4 |
Popis: | We generalize Lusztig's nilpotent varieties, and Kashiwara and Saito's geometric construction of crystal graphs from the symmetric to the symmetrizable case. We also construct semicanonical functions in the convolution algebras of generalized preprojective algebras. Conjecturally these functions yield semicanonical bases of the enveloping algebras of the positive part of symmetrizable Kac-Moody algebras. Comment: 50 pages. Version 2: A few typos fixed. Final version published in Selecta Mathematica |
Databáze: | arXiv |
Externí odkaz: |